Derivatives of Complicated Functions

Rule	у	dy/dx
Power Rule	$y = x^n$	$\frac{dy}{dx} = nx^{n-1}$
Chain Rule	y = f(u)	$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx} = f(u)u'$
Product Rule	y = uv	$\frac{dy}{dx} = uv' + vu'$
Quotient Rule	$y = \frac{u}{v}$	$\frac{dy}{dx} = \frac{vu' - uv'}{v^2}$

$$n =$$
 any rational number

$$u = u(x) \qquad \qquad u' = \frac{du}{dx}$$

$$u = u(x)$$
 $u' = \frac{du}{dx}$
 $v = v(x)$ $v' = \frac{dv}{dx}$

Derivatives of Trigonometric Functions

У	dy/dx
sin x	$\cos x$
$\cos x$	-sin x
tan x	$\sec^2 x$
$\sin u(x)$	$(\cos u) \frac{du}{dx}$
$\cos u(x)$	$(-\sin u) \frac{du}{dx}$
$\tan u(x)$	$(\sec^2 u) \frac{du}{dx}$